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EXECUTIVE SUMMARY  
 

EXECUTIVE SUMMARY 

COCOP aims for plant-wide monitoring and control of complex distributed processes. Control of complex 

industrial processes is typically dependent on computational models and having up-to-date data available to 

be used when optimising production and reducing the environmental impact. Many of these processes are 

distributed which is also the case for the control systems typically used at plants and at sub process levels. 

This makes it challenging to monitor and control the processes when information can not be easily 

communicated and direct integration of information systems is challenging. The developed architecture does 

not try to create a new control system but rather a concept for exchanging information and data in 

distributed processes, so that coordinating control applications can be created in a scalable and more flexible 

manner. 

This document describes the COCOP run-time system architecture and details implementing integrations to 

existing systems as well as how control applications are created. This deliverable is the second updated 

version of two deliverables describing the software architecture, and builds on the initial architecture design 

of the first deliverable both for the internal composition as well as external integrations. 

COCOP is implemented using a model-based, predictive, coordinating optimisation concept in integration 

with plant’s automation systems. This means that existing local control systems are used to control sub 

processes, and the plant-wide control applications built using the COCOP architecture act as the coordinating 

layer transmitting events, restrictions, set points and targets for the plant-wide monitoring and control. 

The general COCOP architecture is based on loose coupling of systems using a message bus architecture. The 

approach emphasizes a separation of concern of message semantics and communication protocols. Agreed 

message structures form the basis of information produced and consumed between system components. 

The communication architecture relies on the message bus as a broker. In addition to publish-subscribe 

communication, the architecture also considers request-response based communication to support 

integration to a variety of existing systems. 
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ABBREVIATIONS  
 

ABBREVIATIONS 

Abbreviation Full name 

AMQP Advanced Message Queuing Protocol 

DCS Distributed Control System 

ERP Enterprise Resource Planning 

HMI Human Machine Interface 

HTTP Hypertext Transfer Protocol 

MES Manufacturing Execution System 

OPC UA Open Platform Communications Unified Architecture 

PLC Programmable Logic Controller 
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1  A r c h i t e c t u r a l  R e q u i r e m e n t s  a n d  C o r e  A s p e c t s  

Plant-wide industrial process control and monitoring applications face challenges from system 

complexity as well as from multi-disciplinary networked system integrations. The distributed 

control systems used in production are typically vendor- and application-specific, which makes 

it challenging to integrate them into plant-wide control functions. Production processes may 

also span beyond one single plant, which introduces new requirements on system integrations 

in order to optimise production beyond the local processes. Further challenges may arise from 

the synchronisation of possibly conflicting data and events, e.g., combining estimated values 

with actual measurements. A traditional periodic control approach (that scans or queries for 

values and then decides its control actions) may prove complex, rigid and laborious to 

implement, especially if several point-to-point connections to other systems need to be 

implemented and maintained. 

1.1 Decoupled Data-driven and Event-driven Architecture 

The COCOP system architecture strives for scalability and enabling extensive utilisation of data 

either as refined information or as massive amounts of raw data. One of the main drivers is also 

decoupling the producers' information from their consumers through a centralised bus or - 

depending on the implementation - a pool of queues for data and events. 

The event-driven approach comes from the requirement for reactive actions possibly also in 

real-time. In some cases, the end of a process step may trigger the start of another. For 

instance, when a batch of process finishes, it may enable the execution of another process step 

for that particular piece of material. 

From a performance point of view, scalability is achieved by removing redundant queries to 

low-level systems and by having a centrally managed bus architecture in between producers 

and consumers of information and data. A centralised message bus allows for efficient scaling, 

caching and managing access independent of the consumers and producers. From a systems 

integration point of view, a centralised bus provides uniform access to the data thus reducing 

engineering effort for the plant-wide control applications. A centralised bus, however, can 

introduce a single point of failure, and additional preventive measures might be needed to 

ensure reliability, e.g., through redundancy or in restrictions how plant-wide monitoring and 

control applications are required to operate in case of manual intervention. 

This kind of architecture benefits especially the development of new plant-wide monitoring and 

control applications in a platform-like development framework. From a development 

perspective, the burden is on integrating existing systems with a multitude of different 

communication interfaces to the bus and the event-driven approach. For this the development 

of adapters is needed to make heterogeneous interfaces compatible. With an adapter an 

existing system is wrapped behind a compatible interface as it is not intended to replace 

existing control systems but to integrate them into the new (COCOP) control environment. 
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Also, a full replacement would be expensive and create a significant hurdle towards 

implementation in plants, as it would imply the installation of new systems with new, unknown 

risks with potential production losses. 

1.2 Enabling Distributed, Loosely Coupled Systems 

Distribution is inevitable in industrial environments. The larger a production plant is, the more 

distribution there usually is. A production plant may even consist of several factories that have 

a dedicated task each. 

Loose coupling is a fundamental design principle in COCOP. The goal is to enable an 

environment where various modules interact in a way that hides the internal details of each 

module. That is, the interfaces of modules should only expose their functionality or contents, 

not the underlying platform or implementation technologies. In addition, the integration 

technologies should be such that enable the modules to operate with minimal dependencies to 

one another, and their mutual integration should be easy. 

Point-to-point integration should be avoided. Point-to-point means direct connections between 

systems, which often leads to a high number of direct dependencies between systems. Then, 

scalability issues would appear, as one of more systems are changed, updated or replaced in 

the future. 

The downside of a bus approach is that producers of data and events do not know who and 

how information is utilised. As a result, additional information security measures may be 

needed in the message bus or even in the plant-wide control applications built on top. 

COCOP focuses on the integration between systems rather than the systems themselves. Thus, 

COCOP does not provide engineering tools, run-time of controllers or similar ready-to-use 

applications. The COCOP project will provide complete control solutions for improving the 

operation of two pilot cases. Nonetheless, one of the main value elements generated in COCOP 

is the underlying concept focused on the integration between system. This concept enables an 

easy integration of the systems (as demonstrated in the project’s use cases) by providing means 

for connecting events and data from the underlying systems, and building advanced plant-wide 

monitoring and control on top of this information. 

1.3 Monitoring and Controlling Distributed Production 

In production plants, a relaxing characteristic is that most systems are static in the sense that 

physical processing units do not change. In contrast, there are also environments where new 

network nodes may appear or leave the network at any time (i.e., the network is dynamic). 

Such environments include the fleets of mobile machinery or vehicles, for instance. 

Fortunately, the network nodes of a typical process control system do not appear or disappear 

arbitrarily. Naturally, any node may temporarily lose its connectivitity due to a failure, and any 

related network nodes should have a design that is robust enough to remain operable in such 
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occasions. Still, the set of available nodes is determined by the physical production equipment. 

That equipment is always installed, operated and uninstalled by plant personnel. Thus, the 

network of nodes does not change its structure very often, and the plant personnel commits 

those changes. 

The information available and of value in control may change more frequently. This includes, 

for example, the deployment of new measurement systems or laboratory procedures, the use 

of improved models and algorithms more accurately estimating process values as well as other 

results available from processing vast amounts of data. One of the intentions with COCOP is to 

have a more flexible platform that can make use of external or processed information that can 

be used e.g. as a constraint in optimisation tasks. 

1.4 Integration to Existing Systems 

1.4.1 Integration Requirements 

Multiple types of existing systems may be integrated with COCOP. The following table gives a 

few examples. Each example is explained after the table. 

System Examples of potential needs 

DCS, PLCs, laboratory, 

quality control, other 

production-related resources 

Measurement values from production processes 

HTTP(S) Hypertext Transfer Protocol (HTTP) over Transport Layer 

Security (TLS). Connecting to a wide range of services and 

information systems using the generic HTTP(S) protocol. 

MES Plant-level production coordination; plant-level production-

related information, scheduling restrictions, availability of 

resources 

ERP Enterprise-level production coordination, resources and 

financial costs 

Logistics Constraints related to material flows, transport capabilities 

DCS (Distributed Control System), PLC (Programmable Logic Controller) are systems that 

provide means for human workers to control complex, distributed production processes. 

In some production plants, laboratory systems are utilised to provide information to help 

process control, e.g. adjust the process conditions. They analyse the substances that are 

involved in a production process. They may, for instance, estimate the concentration of specific 

substances, which may provide advice to reach closer-to-optimal operation. Laboratory 

systems are often also part of Quality control systems help reaching the desired quality of the 
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end product. With appropriate quality control the yield can be improved and also the amount 

of waste may be reduced, which increases productivity. 

A Manufacturing Execution System (or MES) may provide production-related information at the 

plant level. Rather than controlling the individual low-level processes, MES systems coordinate 

plant operation as a whole. Concerning COCOP, MES systems may provide schedules or other 

coordinative information not available in the unit process level. 

ERP (Enterprise Resource Planning) systems have business matters as the scope. From the 

production point of view, an ERP system may, for instance, receive production-related data to 

indicate production performance, but it may also coordinate production in the enterprise-wide 

scope. 

Logistics is an important aspect in production optimisation. To optimise production, multiple 

logistics-related factors may be relevant, including the timely delivery of raw materials, 

intermediate products or an appropriate amount of materials in the storage. 

1.5 Pilot Case Requirements 

The COCOP architecture concept is developed for process industry in general. However, in the 

early stages of development, the design is focused on developing a solution to support the pilot 

cases in copper and steel production. 

1.5.1 Copper 

In a plant that refines copper from sulphide ores, there is a great degree of distribution and 

concurrency in production. The unit processes of such plant are operated locally, but the 

material flows between the unit processes create dependencies. The most important unit 

processes of a plant may be, e.g. (Schlesinger et al., 2011, pp. 1-12): 

1. Flash smelt furnace (FSF) 

2. Peirce-Smith converters (PSC) 

3. Anode furnace and casting (AF) 

4. Electrorefining 

5. Melting, casting 

Starting from unit process 1, each unit process provides the raw material for the next. 

Consequently, any processing-related shortcomings in a unit process may have adverse effects 

on the following phases. 

Besides, efficient production requires further coordination. The waste (or slag) from each phase 

requires further processing, because it still contains some copper. Thus, a slag cleaning furnace 

(SCF) or a slag concentrator may exist, or the slag may also be circulated back to FSF. 

Furthermore, some of the end products are harmful to the environment. The ore being 
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processed can contain some heavy metals, and the gases released during each unit process can 

contain, for instance, sulphur dioxide. To process sulphur dioxide, the modern plants have off-

gas handling and ventilation systems connected to an sulphuric acid plant to process the 

captured sulphur dioxide to sulphuric acid. As the capacity of the acid plant is typically limited 

and, on the other hand, the emissions of sulphur dioxide should be minimised, the operation of 

the acid plant may restrict the execution of other aforementioned unit processes. Within 

COCOP, the document D2.3 System Requirements Specifications (2017) explains the 

requirements that are considered in particular. 

In the coordination of copper production, correct timing is essential. The execution of each task 

should be scheduled considering the entire plant. Event-driven operation is important, as 

changes in process states (such as start or end) may trigger or even hinder an operation. Still, 

due to slow process dynamics, the required resolution of response times is approximately one 

minute in most tasks. In comparison, some other production plants may require a timing 

accuracy of fractions of a second. 

In summary, the operation of a copper plant requires coordination with a plant-wide 

perspective. Thus, for optimal operation, each unit process should be operated within plant-

wide constraints. 

1.5.2 Steel 

The increase of the Chinese steel production has permanently changed the global market. The 

fierce competition has led several producers to close their production while the ones still 

operating have seen their margins drop. Even in this situation, European producers have 

showed higher resiliance due to the specialisation and the high quality of their products. 

Nonetheless, the European companies deal with the overcoming challenge of maintaining their 

competitiveness while reducing their emissions considerably and competing with countries 

with lower costs for energy and workforce. 

In this framework, European producers are making great advances towards the optimisation of 

their production, targeting not only environmental improvements but also increased quality 

and resource use efficiency. 

Two main process routes for steel production are Electric Arc Furnace (EAF) and Blast Oxygen 

Furnace (BOF). BOF and EAF processes both produce steel as the end product while having a 

different way of producing it. BOF plants use Iron ore, Coal and limestone as primary raw 

materials while the EAF use scrap steel as the main input. In the BOF, Sinter plant, Coke 

furnaces and blast furnaces are used for preparing the material which is then fed into the Blast 

oxygen Furnace. In the EAF route, the scrap metal is directly loaded into the electric arc 

furnace, thus having a much simpler route for the production. However, these two main routes 

represent only the first stage of the steel production, which is called primary metallurgy. From 

this point, the steel goes through a long set of processes before the end product is obtained. 

First, the steel goes to the secondary metallurgy where the composition of the steel is adjusted 
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to the specific needs of the client. After this, the steel is casted into subproducts (slabs, billets, 

...) that are easier to work with. These subproducts are then used as input for the production of 

steel products. 

As mentioned earlier, the main optimisation targets of steel plants are the more efficient raw 

material use (either scrap or primary materials) and the energy efficiency of the processes. 

Observing the European steel makers, a clear picture of the complexity of the production chain 

can be obtained. A regular steel plant can produce around 100 different grades of steel 

(different chemical compositions) and for each one of them, be able of producing several 

products (e.g. bars, sheets) in a wide variety of sizes. Accordingly, the steel plants can account 

for hundreds of thousands different end products being manufactured in their plants, including 

in this manufacturing process, several unit processes. With this scenario, it is clear that 

optimising the efficiency of the individual unit processes is not enough. Indeed, great efforts 

need to be made plant-wide for arranging optimal production planning and for ensuring final 

product quality. 

These two aspects have a great impact in the overall efficiency of the plant, the first, by 

reducing the energy and time usage for sub-process adaptation for new orders and the second, 

reducing scrap generation and ensuring client satisfaction (high quality products). In the COCOP 

project, main focus will be in the optimisation of the final product quality (reducing rejection 

rate) through higher knowledge (and control) of the involved production steps and their 

parameters. 
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2  P l a t f o r m  A r c h i t e c t u r e  D e s i g n  

2.1 Message Bus Architecture for Scalable, Loosely Coupled Systems  

The architecture design is illustrated in the following figure. The communication platform 

enables message exchange between various entities that do not have any direct mutual 

dependencies. 

 
Figure 1 Architecture illustrated 

COCOP aims for a message bus based approach mainly brokering data and event messages in 

contrast to Enterprise Service Bus (ESB). ESBs are typically used to deploy, connect and manage 

integrations between different information systems in the form of services, and they typically 

include support for several protocols including advanced transformation capabilities as well 

(Bhadoria et al. 2017). Including the necessary adapters from existing systems to the COCOP 

concept architecture the final technology stack can resemble that of common ESBs. 

For COCOP the architecture is implemented using AMQP (Advanced Message Queuing Protocol, 

AMQP 0-9-1) as the messaging technology. As presented in D3.5 Interface and protocol 

definitions, AMQP provides good means for implementing the desired, loosely coupled 

architecture. The typical communication pattern in AMQP is publish-subscribe, which suits 

event-based scenarios that often occur in industrial production. In such scenarios, data sources 

generate events and data consumers react to them. In publish-subscribe, if any system (such as 

a supervisory system for human workers or an automated scheduler) wants to receive 

information of an event, the system would then subscribe for it. In such an event-based 
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approach, there is no need to query for state information, because the event reaches any party 

that is interested (in contrast to request-response, where each data delivery occurs on the 

request of the receiver). The event-based approach for message delivery is illustrated in the 

following figures. Once connected to a message bus, any node, such as a production system or 

an optimisation module, may receive events from other nodes. A single event may travel to 

multiple subscribers if appropriate. 

 
Figure 2 Publish-subscribe and request-response messaging. 

 
Figure 3 Example of production related entities communicating using a message bus. 

AMQP is not the only message bus technology. For instance, ZeroMQ (2018) provides a 

message bus without any centralised node, which is simpler to implement but also lacks 

centralised coordination. Another alternative is Message Queuing Telemetry Transport (MQTT 

2018), which is targeted to low-resource devices. For COCOP, AMQP was chosen due to its 

security features and centralised bus approach. 

To implement the COCOP concept, application-specific customisation and specification is 

possible and even necessary. The COCOP architecture does not explicitly specify or limit what 

kind of messages are transferred between system components, although suitable message 

structures are presented in D3.5 Interface and protocol definitions. Similarly, COCOP does not 

enforce certain messaging patterns, although several patterns are supported. 
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2.2 Consumer Application State Considerations 

A message bus communication can have different kinds of implementations and features. The 

most primitive ones transmit messages received from producers either to all consumers or only 

those that have registered for the particular messages. More advanced message bus 

implementations include advanced routing, caching and access management. Some 

implementations can even store messages for a certain duration and may, for example, retain 

the most recent messages for new consumers to receive. This is especially beneficial for new 

data or events that is seldom updated. From a plant-wide monitoring and control application 

development point of view, the state management responsibility is transferred to the particular 

applications and case implementations. 

Implementing the event-driven approach will require either that 1) all operational data is 

periodically updated (even if no changes occur), 2) most recent messages are retained (as some 

events can happen very seldom), or 3) there are means to also query recent data and events. 

To enable integration with various systems, adapters are typically utilised to wrap existing 

systems to new interfaces. The first option of always updating values is straightforward to 

implement in adapters but increases the amount of data transferred unnecessarily. This also 

puts more pressure on consumer applications to know when and if to process new 

measurements. The second option is easier to implement in client applications but reduces the 

number of standard message buses and protocols available as many of such features are 

implementation specific. The third and the favourable option provides most flexibility and also 

enables request-response like behavior but incur additional functional requirements for 

adapters realising the query capabilities. 

2.3 Supporting Client-Server Communication 

It has been identified that many traditional systems currently in use operate on a polling or 

request-response basis. For example, Human Machine Interfaces (HMI) scan periodically for 

new values through queries and update the user interface displays accordingly. A message bus 

solution - depending on the implementation - may not store the last value, and therefore it is 

required for the COCOP concept to have request-response behavior available for client-server 

communication as well. 

In industrial environments, there are also de facto protocols in use, such as OPC UA (OPC, 

2015), that provide standard connectivity between systems. The standardisation may enable 

close to plug-and-play behavior when integrating components. Encouraging the use of standard 

solutions facilitates the interoperability of industrial control systems, and it is one of the COCOP 

architecture objectives. Interfaces and protocols suitable for implementing the COCOP system 

architecture are detailed in D3.5 Interface and protocol definitions. 

To provide client-server communication - while using an asynchronous message bus as the core 

- requires new functionality for the adapters or systems directly integrated to the COCOP 

architecture. In addition to pushing new information onto the bus, the adapters need to listen 
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for specific requests from others and then be capable of returning the requested information 

onto the bus. The use of request-response wrappers is illustrated in the following figures. 

 
Figure 4 In order to realise request-response communication a wrapper to the message bus needs to be implemented. 

 
Figure 5 The message bus conveys request invocations between system components. 

2.4 Integration Approach 

To better support integration with various systems, adapters are utilised, i.e. an existing system 

is wrapped behind another interface (see the following figure). In principle, any existing 

interface may be wrapped with any other interface. Thus, to unify interfaces, adapters are a 

powerful approach; no matter how heterogeneous interfaces the existing systems have, it is 

possible to unify them. A similar approach has been documented as a generic design pattern in 

software design (Lasater, 2006, p. 206). 
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Figure 6 Adapter-based integration illustrated 

To facilitate integration, and speed up the development of such adapters, client libraries have 

been developed that abstract the message bus. An API stack has been designed as shown in the 

following pictures to facilitate serialization of message structures, communication with the 

message bus as well as to enable request-response communication over the message bus. API 

SDK stacks have been successfully implemented in Java and C# for AMQP integration and the 

message structures presented in the following section. 

 
Figure 7 The SDK facilitates integration to the message bus and speeds up development. A request-response stack extension 

(as seen on the right) has also been designed to enable request-response communication over the message bus. 
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2.5 Entity Types 

The COCOP system consists of entities (also called components or modules). The entities have 

various types as given in the following table. Each entity type is explained in the coming 

subsections. 

Entity type Purpose 

Data source To retrieve data from existing production-related information systems 

Data mining tools Data mining tools to discover information in production data 

Models and 

optimisation 
Modules that optimise production 

Data output Modules that provide information to external systems (e.g., operator 

interfaces) 

2.5.1 Data Source Entities 

Data sources provide production-related data from related information systems. The messages 

may cover, for instance, measurement values from the production process, both actual and 

historic data. Potentially, the data may also cover equipment state or process status 

information. For instance, the information about finishing a process step could trigger a 

scheduling operation for the next step. Also, condition monitoring and wear information is of 

importance as failing equipment can cause bad quality or complete disruption of the 

production proces. 

2.5.2 Data Mining Tool Entities 

Data mining and data analytics describe a group of known techniques used to extract 

information from data. Examples of these techniques are multivariate non-linear statistics, 

neural networks or decision trees. Beneath (offline) analytics, data-based or data-driven models 

can be developed that can be used, for example, as a soft sensor (regression model) or as 

decision support for the operators (classification models). Together with existing physical or 

first principle models, data analysis is often used for parameter estimation on the basis of 

historical data or in various combinations as a hybrid model. 

Within the framework of COCOP, the Data Mining Tool Entity is used for the development of 

data-driven models. The necessary data is requested from the Data Source Entity via the 

message bus. All information collected is used indirectly during modeling in the Model Entity or 

in the design of the data preprocessing during the data request of the models. 
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2.5.3 Model and Optimisation Entities 

Modelling and optimisation tools help the management of production processes. They may 

provide, for instance, production schedules or other assistance. 

2.5.4 Data Output Entities 

The data output entities refer to any items that expose information to higher-level systems, 

such as the graphical user interfaces of production operators. The actual data output is likely 

provided by computational models and other optimisation-related entities, but there may also 

be other output entities that gather or reformat the information supplied by other entities. 

2.6 Message Structures 

To enable communication between entities, appropriate message structures must be specified. 

It is possible to reuse a set of generic message structures to provide data from all entity types 

despite their varying requirements, provided that the coverage of the structures is sufficient. 

In COCOP, message structures have been separated from the medium of transport by design, as 

shown in the following figure. On one hand, during design, separation helps to concentrate on 

one aspect only. In message design, that aspect is message structures, and in the design of 

communication functionality, the aspect is the actual communication mechanism. On the other 

hand, separation enables both flexibility and adaptability. This advantage realises whenever 

there is a need to change (or even replace) either the message formats or the communication 

protocol. 

 
Figure 8 In COCOP the messaging semantics are decoupled from the communication protocol by design. 

COCOP does not discriminate (there are no limitations) as to whether the message structures 

are utilised for internal or external communication. Due to the generic nature of the structures, 

there is no need for such limitations. However, to realize the integration and prove the 

conceptual architecture, some standards and message structures have been used in 

successfully implementing the communication. 

As the format of messages, the standards in the following table are utilised. Each of the 

standards have been published by Open Geospatial Consortium (2018). Although the standards 

were designed for the geospatial domain, they suit well for the presentation of measurements 

and other industrial data. It is notable that these standards have been built on modules from 

other standards, so the actual number of related standards is higher. In addition, these 
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standards also have mutual relationships. For instance, the Observations and Measurements 

specification refers to the data structures of SWE Common. 

Standard Abbreviation Purpose 

Observations and Measurements 

(2013) 
O&M Delivery of measurements with related 

metadata 

Sensor Observation Service (2012) SOS Request-response-based delivery of 

observations 

Sensor Planning Service (2011) SPS Management of calculation tasks in the 

request-response manner 

SWE Common Data Model 

Encoding Standard (2011) 
SWE Generic data structures 

TimeseriesML (2016) TSML Data structures for time series 

These message structure standards specify serialisation in XML (Extensible Markup Language). 

Although JSON (JavaScript Object Notation) would be a more lightweight alternative, XML has a 

wide tool support, so it is feasible for COCOP. 

2.6.1 Messaging Examples 

The following code provides an example of a measurement and the associated metadata (i.e., 

an observation based on Observations and Measurements (2013)). The message has been 

simplified to focus on the contents. For instance, namespace information has been omitted. 

Phenomenon time is the time when the measurement occurred, and result time is the time it 

became available. The actual measured value is 5.3 tons. This value is enclosed in the "result" 

element, which can hold a variety of structures depending on the need - here, it is a single 

measurement. Other data types, such as strings, enumeration values and timestamps are also 

supported. The elements other than result hold metadata, which has a similar structure 

regardless of the payload. 

<OM_Observation> 

 <description>The mass of a production batch</description> 

 <name>Mass</name> 

 <type href="http://www.opengis.net/def/observationType/OGC-

OM/2.0/OM_Measurement"/> 

 <phenomenonTime> 

 <TimeInstant> 

 <timePosition>2018-02-05T12:10:13.00</timePosition> 

 </TimeInstant> 

 </phenomenonTime> 

 <resultTime> 

 <TimeInstant> 
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 <timePosition>2018-02-05T12:31:53.00</timePosition> 

 </TimeInstant> 

 </resultTime> 

 <result xsi:type="MeasureType" uom="t">5.3</result> 

</OM_Observation> 

If the delivered payload is a composite element (i.e., holds multiple values), a type called data 

record would be utilised as the payload of an observation. This data record would be wrapped 

in an observation to enclose metadata. This data record structure comes from the SWE 

Common Data Model Encoding Standard (2011). It is notable that a data record can hold 

another data record, which enables even hierarchical data structures. Please see the following 

example that holds a sample ID, two measured concentration values and a nested data record. 

<DataRecord> 

  <field name="SampleId"> 

    <Count> 

      <value>442</value> 

    </Count> 

  </field> 

  <field name="Concentration1"> 

    <Quantity> 

      <uom code="%"/> 

      <value>5.6</value> 

    </Quantity> 

  </field> 

  <field name="Concentration2"> 

    <Quantity> 

      <uom code="%"/> 

      <value>3.1</value> 

    </Quantity> 

  </field> 

  <field name="NestedDataRecord"> 

    <DataRecord> 

      <!-- Enclose another data record --> 

    </DataRecord> 

  </field> 

</DataRecord> 

 

The supported message structures are not limited to measurement data. As an example, there 

are also structures to remotely control long-running calculation tasks. The code below shows a 

request to update a calculation task related to the consumption of resources. The message 
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specifies new parameter values: energy input is 34 kW and raw material input is 0.3 tons per 

hour. The targetTask field identifies the calculation task. The message is based on the stardard 

Sensor Planning Service (2011). 

<Update> 

  <procedure>cocop/lca</procedure> 

  <taskingParameters> 

    <ParameterData> 

      <values> 

        <DataRecord> 

          <field name="EnergyInput"> 

            <Quantity> 

              <uom code="kW"/> 

              <value>34</value> 

            </Quantity> 

          </field> 

          <field name="RawMaterialInput"> 

            <Quantity> 

              <uom code="t/h"/> 

              <value>0.3</value> 

            </Quantity> 

          </field> 

        </DataRecord> 

      </values> 

    </ParameterData> 

  </taskingParameters> 

  <targetTask>cocop/lca/tasks/314</targetTask> 

</Update> 

 

To illustrate the utilisation of messages, the following figure provides a scenario in copper 

production. In the scenario, a model for PSC (Peirce-Smith Converter) operation exchanges 

information with a coordinating scheduler and an online LCA (Life Cycle Assessment) module. 

Although PSCs operate autonomously, they receive coordinating schedules, as the operation of 

the copper plant is controlled in the plant level. Whenever the scheduler receives information 

about a state change in PSC, it refreshes the PSC schedule to consider the actual situation. The 

utilised message type is Observation (Observations and Measurements, 2013) for both 

schedules and state changes, although the actual payload varies and the observation type only 

holds metadata. The utilised messaging pattern is publish-subscribe, as the scheduler and PSC 

optimiser have previously signed up for certain messages from each other. The purpose of the 

online LCA module is to estimate environmental load. This LCA is run in the background. At the 
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start of each batch process, the PSC module submits a TaskingRequest (Sensor Planning Service, 

2011) to the online LCA module to start LCA calculation, and the LCA module responds with a 

TaskingResponse. Later, whenever state changes occur in PSC, it informs the LCA module. For 

this LCA-related messaging, the request-response pattern is utilised. It is notable that, although 

not visible in the diagram, all messaging occurs via the message bus. 

 
Figure 9 An example of message utilisation. 

2.7 Information Security 

User (or system) authentication should be required to access information transmitted using the 

COCOP platform. Using authentication, it is possible to prevent unauthorised access. Even in 

cases where the system is utilised within a single facility, layered security is desirable. Then, 

even if a malicious user were able to break into a system, authentication would form another 

obstacle. However, some production plants may actually run multiple facilities separated from 

each other. In such cases, some communication may occur via public network routes, which 

makes user authentication and encryption obligatory. In modern, distributed plants it is also 

increasingly common that several systems and system vendors communicate using the same 

networks. 

Data encryption should also be applied in communication, and especially in multi-vendor or 

globally spanning networks. Then, there is no straightforward means to interpret any messages 

that could be captured. Furthermore, a suitable encryption technique also hides the traffic of 

user authentication. The importance of encryption increases in complex, geographically 

distributed production plants. 

The following figure illustrates the security approach. Both user authentication and data 

encryption are required for secure communication. 
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Figure 10 The security approach covers encryption and user authentication 

Information security may be implemented either using the built-in features of the message bus 

(if available) or separately in an application specific manner. Using built-in features is obviously 

limited to the chosen message bus implementation; most implementations offer (application 

level) authentication and encryption, e.g. username/password or certificate and HTTPS. 

Application- or case-dependant authentication requires further implementation but increases 

the flexibility of the approach, as it can be integrated to any existing access rights management 

means being used. Embedding application-specific encryption of messages further improves 

the security, as not even the broker can interpret the message content. 

2.8 Robust Module Design 

The COCOP architecture does not specify the internal design of the modules that are connected 

to the system but only their external behavior. The modules may provide data to others or 

consume data. A module may also be both a consumer and a provider. 

However, each module should be designed robust and independent (in accordance with 

industry practices). For instance, this means that the internal algorithms of a module must not 

get confused if some message is submitted multiple times for one reason or another. Although 

consistent messaging is a design goal as well, each module should process data in way not too 

fragile in terms of inconsistencies. 
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3  C o n c l u s i o n  

This updated architecture description document defines general COCOP architecture concepts, 

means for communication, integration requirements, and the identified internal entities of the 

COCOP system. 

COCOP aims for plant-wide monitoring and control of industrial processes. These processes are 

typically dependent on computational models as well as having up-to-date data available when 

optimising production and the use of resources. Industrial processes are distributed - also 

globally - which makes it challenging to monitor and control the processes when information 

can not be easily communicated and the direct integration of multiple information systems is 

required. 

COCOP does not implement a new control system but a model-based, predictive, coordinating 

optimisation concept that operates in integration with existing automation systems of a plant. 

The COCOP system architecture is developed as a platform for exchanging information and data 

in distributed processes, thus enabling coordinating control applications to be created in a 

scalable and more flexible manner. 

The general COCOP architecture is based on loose coupling of systems using a message bus 

architecture in a data-driven and event-driven style. The arguments for this design are 

scalability, decoupling message producers and consumers, reducing direct system integrations, 

and facilitating building of new monitoring and control applications based on the conceptual 

architecture. 

An imporant design principle is retaining flexibility in what kind of messages are transmitted in 

order to leave sufficient room for case specific applications to specify and build applications 

supporting the production. Therefore, messages and their structures are separated from the 

communication medium, i.e. allowing development to focus separately on semantics and the 

communication infrastructure or changing either one separately, if necessary. 

The communication infrastructure of COCOP has been successfully implemented using AMQP. 
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